dirmul.old(link = "loge", earg = list(),
init.alpha = 0.01, parallel = FALSE, zero = NULL)
Links
for more choices.
Here, $M$ is the number of columns of the response matrix.link
.
See earg
in Links
for general information.alpha
vector. Must be positive.
Recycled to length $M$."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
.choose
).
The (posterior) mean is
Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions, New York: Wiley-Interscience, Third edition.
Paul, S. R., Balasooriya, U. and Banerjee, T. (2005) Fisher information matrix of the Dirichlet-multinomial distribution. Biometrical Journal, 47, 230--236.
Tvedebrink, T. (2010) Overdispersion in allelic counts and $\theta$-correction in forensic genetics. Theoretical Population Biology, 78, 200--210.
Documentation accompanying the
dirmultinomial
,
dirichlet
,
betabin.ab
,
multinomial
.# Data from p.50 of Lange (2002)
alleleCounts <- c(2, 84, 59, 41, 53, 131, 2, 0,
0, 50, 137, 78, 54, 51, 0, 0,
0, 80, 128, 26, 55, 95, 0, 0,
0, 16, 40, 8, 68, 14, 7, 1)
dim(alleleCounts) <- c(8, 4)
alleleCounts <- data.frame(t(alleleCounts))
dimnames(alleleCounts) <- list(c("White","Black","Chicano","Asian"),
paste("Allele", 5:12, sep = ""))
set.seed(123) # @initialize uses random numbers
fit <- vglm(cbind(Allele5,Allele6,Allele7,Allele8,Allele9,
Allele10,Allele11,Allele12) ~ 1, dirmul.old,
trace = TRUE, crit = "c", data = alleleCounts)
(sfit <- summary(fit))
vcov(sfit)
round(eta2theta(coef(fit), fit@misc$link), dig = 2) # not preferred
round(Coef(fit), dig = 2) # preferred # preferred
round(t(fitted(fit)), dig = 4) # 2nd row of Table 3.5 of Lange (2002)
coef(fit, matrix = TRUE)
pfit <- vglm(cbind(Allele5,Allele6,Allele7,Allele8,Allele9,
Allele10,Allele11,Allele12) ~ 1,
dirmul.old(parallel = TRUE), trace = TRUE,
data = alleleCounts)
round(eta2theta(coef(pfit), pfit@misc$link), dig = 2) # not preferred
round(Coef(pfit), dig = 2) # preferred
Run the code above in your browser using DataLab