
zibinomial(lphi = "logit", lmu = "logit", ephi = list(), emu = list(),
iphi = NULL, zero = 1, mv = FALSE, imethod = 1)
Links
for more choices.earg
in Links
for general information.FALSE
to mean the function does
not handle multivariate responses. This is to remain compatible with
the same argument in binomialff
.CommonVGAMffArguments
for information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.iphi
.size
in
rzibinom
is $N$ here.
The parameter $\phi$ satisfies $0 < \phi < 1$. The mean of $Y$ is $E(Y)=(1-\phi) \mu$ and these are returned as the fitted values.
By default, the two linear/additive predictors are $(logit(\phi),
logit(\mu))^T$.rzibinom
,
binomialff
,
posbinomial
,
rbinom
.size = 10 # Number of trials; N in the notation above
nn = 200
zibdata = data.frame(phi = logit( 0, inverse = TRUE), # 0.50
mubin = logit(-1, inverse = TRUE), # Mean of usual binomial
sv = rep(size, length = nn))
zibdata = transform(zibdata,
y = rzibinom(nn, size = sv, prob = mubin, phi = phi))
with(zibdata, table(y))
fit = vglm(cbind(y, sv - y) ~ 1, zibinomial, zibdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models
fit@misc$p0 # Estimate of P(Y = 0)
head(fitted(fit))
with(zibdata, mean(y)) # Compare this with fitted(fit)
summary(fit)
Run the code above in your browser using DataLab