Learn R Programming

VGAM (version 0.8-6)

invparalogistic: Inverse Paralogistic Distribution Family Function

Description

Maximum likelihood estimation of the 2-parameter inverse paralogistic distribution.

Usage

invparalogistic(lshape1.a = "loge", lscale = "loge",
                eshape1.a = list(),   escale = list(),
                ishape1.a = 2, iscale = NULL, zero = NULL)

Arguments

lshape1.a, lscale
Parameter link functions applied to the (positive) shape parameter a and (positive) scale parameter scale. See Links for more choices.
eshape1.a, escale
List. Extra argument for each of the links. See earg in Links for general information.
ishape1.a, iscale
Optional initial values for a and scale.
zero
An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. Here, the values must be from the set {1,2} which correspond to a, scale, respectively.

Value

  • An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.

Details

The 2-parameter inverse paralogistic distribution is the 4-parameter generalized beta II distribution with shape parameter $q=1$ and $a=p$. It is the 3-parameter Dagum distribution with $a=p$. More details can be found in Kleiber and Kotz (2003).

The inverse paralogistic distribution has density $$f(y) = a^2 y^{a^2-1} / [b^{a^2} {1 + (y/b)^a}^{a+1}]$$ for $a > 0$, $b > 0$, $y > 0$. Here, $b$ is the scale parameter scale, and $a$ is the shape parameter. The mean is $$E(Y) = b \, \Gamma(a + 1/a) \, \Gamma(1 - 1/a) / \Gamma(a)$$ provided $a > 1$; these are returned as the fitted values.

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.

See Also

Invparalogistic, genbetaII, betaII, dagum, sinmad, fisk, invlomax, lomax, paralogistic.

Examples

Run this code
idata = data.frame(y = rinvparalogistic(n = 3000, 4, 6))
fit = vglm(y ~ 1, invparalogistic, idata, trace = TRUE)
fit = vglm(y ~ 1, invparalogistic(ishape1.a = 2.7, iscale = 3.3),
           idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

Run the code above in your browser using DataLab