pobs0
.dzanegbin(x, size, prob = NULL, munb = NULL, pobs0 = 0, log = FALSE)
pzanegbin(q, size, prob = NULL, munb = NULL, pobs0 = 0)
qzanegbin(p, size, prob = NULL, munb = NULL, pobs0 = 0)
rzanegbin(n, size, prob = NULL, munb = NULL, pobs0 = 0)
length(n) > 1
then the length is taken to be the number required.dnbinom
).
Some arguments have been renamed slightly.pobs0 = 0
corresponds
to the response having a positive negative binomial distribution.dzanegbin
gives the density and
pzanegbin
gives the distribution function,
qzanegbin
gives the quantile function, and
rzanegbin
generates random deviates.pobs0
,
else a positive
negative binomial($\mu_{nb}$, size)
distribution.zanegbinomial
,
rposnegbin
.munb <- 3; size <- 4; pobs0 <- 0.3; x <- (-1):7
dzanegbin(x, munb = munb, size = size, pobs0 = pobs0)
table(rzanegbin(100, munb = munb, size = size, pobs0 = pobs0))
x = 0:10
barplot(rbind(dzanegbin(x, munb = munb, size = size, pobs0 = pobs0),
dnbinom(x, mu = munb, size = size)),
beside = TRUE, col = c("blue","green"), cex.main = 0.7, las = 1,
ylab = "Probability",names.arg = as.character(x),
main = paste("ZANB(munb = ", munb, ", size = ", size,",
pobs0 = ", pobs0,
") [blue] vs", " NB(mu = ", munb, ", size = ", size,
") [green] densities", sep = ""))
Run the code above in your browser using DataLab