
identity(theta, inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
nidentity(theta, inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
Links
.identity()
:
for deriv = 0
, the identity of theta
, i.e.,
theta
when inverse = FALSE
,
and if inverse = TRUE
then theta
.
For deriv = 1
, then the function returns
d theta
/ d eta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
For nidentity()
: the results are similar to identity()
except for a sign change in most cases.
Inf
, -Inf
, NA
or NaN
.
The function nidentity
is the negative-identity link function and
corresponds to $g(\theta)=-\theta$.
This is useful for some models, e.g., in the literature supporting the
egev
function it seems that half of the authors use
$\xi=-k$ for the shape parameter and the other half use $k$
instead of $\xi$.
Links
,
loge
,
logit
,
probit
,
powl
.identity((-5):5)
identity((-5):5, deriv = 1)
identity((-5):5, deriv = 2)
nidentity((-5):5)
nidentity((-5):5, deriv = 1)
nidentity((-5):5, deriv = 2)
Run the code above in your browser using DataLab