mix2exp(lphi = "logit", llambda = "loge", iphi = 0.5, il1 = NULL,
il2 = NULL, qmu = c(0.8, 0.2), nsimEIM = 100, zero = 1)
Links
for more choqmu
.probs
argument into
"vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.iphi
, il1
, il2
,
qmu
is highly recommended. Graphical methods such
as hist
can be used as an aid.
This
rexp
,
exponential
,
mix2poisson
.lambda1 <- exp(1); lambda2 <- exp(3)
(phi <- logit(-1, inverse = TRUE))
mdata <- data.frame(y1 = rexp(nn <- 1000, lambda1))
mdata <- transform(mdata, y2 = rexp(nn, lambda2))
mdata <- transform(mdata, Y = ifelse(runif(nn) < phi, y1, y2))
fit <- vglm(Y ~ 1, mix2exp, data = mdata, trace = TRUE)
coef(fit, matrix = TRUE)
# Compare the results with the truth
round(rbind('Estimated' = Coef(fit),
'Truth' = c(phi, lambda1, lambda2)), digits = 2)
with(mdata, hist(Y, prob = TRUE, main = "Orange = estimate, blue = truth"))
abline(v = 1 / Coef(fit)[c(2, 3)], lty = 2, col = "orange", lwd = 2)
abline(v = 1 / c(lambda1, lambda2), lty = 2, col = "blue", lwd = 2)
Run the code above in your browser using DataLab