inv.paralogistic(lscale = "loge", lshape1.a = "loge", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE, gscale = exp(-5:5),
gshape1.a = exp(-5:5), probs.y = c(0.25, 0.5, 0.75),
zero = ifelse(lss, -2, -1))
CommonVGAMffArguments
for important information.a
and scale
.
See Links
for more choices.CommonVGAMffArguments
for information.
For imethod = 2
a good initial value for
ishape1.a
is needed to obtain a good estimate for
the other parameter.CommonVGAMffArguments
for information.CommonVGAMffArguments
for information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The inverse paralogistic distribution has density
scale
,
and $a$ is the shape parameter.
The mean is
Inv.paralogistic
,
genbetaII
,
betaII
,
dagum
,
sinmad
,
fisk
,
inv.lomax
,
lomax
,
paralogistic
,
simulate.vlm
.idata <- data.frame(y = rinv.paralogistic(n = 3000, exp(1), scale = exp(2)))
fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE), data = idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.paralogistic(imethod = 2, ishape1.a = 4),
data = idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Run the code above in your browser using DataLab