bilogistic(llocation = "identitylink", lscale = "loge",
iloc1 = NULL, iscale1 = NULL, iloc2 = NULL, iscale2 = NULL,
imethod = 1, zero = NULL)
Links
for more choices.Links
for more choices.imethod
. Assigning values here will override
the argument imethod
.imethod
. Assigning values here will override
the argument imethod
.1
or 2
which
specifies the initialization method. If failure to converge occurs
try the other value."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
.By default, $\eta_1=l_1$, $\eta_2=\log(s_1)$, $\eta_3=l_2$, $\eta_4=\log(s_2)$ are the linear/additive predictors.
Castillo, E., Hadi, A. S., Balakrishnan, N. Sarabia, J. S. (2005) Extreme Value and Related Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.
logistic
,
rbilogis
.ymat <- rbilogis(n <- 1000, loc1 = 5, loc2 = 7, scale2 = exp(1))
plot(ymat)
fit <- vglm(ymat ~ 1, fam = bilogistic, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))
vcov(fit)
head(weights(fit, type = "work"))
summary(fit)
Run the code above in your browser using DataLab