data(crashi)
data(crashf)
data(crashtr)
data(crashmc)
data(crashbc)
data(crashp)
data(alcoff)
data(alclevels)
rownames
of each data frame is the
start time (hourly from midnight onwards) on a 24 hour clock,
e.g., 21 means 9.00pm to 9.59pm.
For crashes,
chrashi
are the number of injuries by car,
crashf
are the number of fatalities by car
(not included in chrashi
),
crashtr
are the number of crashes involving trucks,
crashmc
are the number of crashes involving motorcyclists,
crashbc
are the number of crashes involving bicycles,
and
crashp
are the number of crashes involving pedestrians.
For alcohol-related offences,
alcoff
are the number of alcohol offenders from
breath screening drivers,
and
alclevels
are the blood alcohol levels of fatally injured drivers.rrvglm
,
rcim
,
grc
.plot(unlist(alcoff), type = "l", frame.plot = TRUE,
axes = FALSE, col = "blue", bty = "o",
main = "Alcoholic offenders on NZ roads, aggregated over 2009",
sub = "Vertical lines at midnight (purple) and noon (orange)",
xlab = "Day/hour", ylab = "Number of offenders")
axis(1, at = 1 + (0:6) * 24 + 12, labels = colnames(alcoff))
axis(2, las = 1)
axis(3:4, labels = FALSE, tick = FALSE)
abline(v = sort(1 + c((0:7) * 24, (0:6) * 24 + 12)), lty = "dashed",
col = c("purple", "orange"))
# Goodmans RC models
fitgrc1 <- grc(alcoff) # Rank-1 model
fitgrc2 <- grc(alcoff, Rank = 2, Corner = FALSE, Uncor = TRUE)
Coef(fitgrc2)
biplot(fitgrc2, scaleA = 2.3, Ccol = "blue", Acol = "orange",
Clabels = as.character(1:23), xlim = c(-1.3, 2.3),
ylim = c(-1.2, 1))
Run the code above in your browser using DataLab