Last chance! 50% off unlimited learning
Sale ends in
dozibeta(x, shape1, shape2, pobs0 = 0, pobs1 = 0, log = FALSE,
tol = .Machine$double.eps)
pozibeta(q, shape1, shape2, pobs0 = 0, pobs1 = 0,
lower.tail = TRUE, log.p = FALSE, tol = .Machine$double.eps)
qozibeta(p, shape1, shape2, pobs0 = 0, pobs1 = 0,
lower.tail = TRUE, log.p = FALSE, tol = .Machine$double.eps)
rozibeta(n, shape1, shape2, pobs0 = 0, pobs1 = 0,
tol = .Machine$double.eps)
Beta
.Beta
.dozibeta
gives the density,
pozibeta
gives the distribution function,
qozibeta
gives the quantile, and
rozibeta
generates random deviates.pbeta
),
$\omega_0$ is the inflated probability at 0
and $\omega_1$ is the inflated probability at 1.
The default values of $\omega_j$ mean that these
functions behave like the ordinary Beta
when only the essential arguments are inputted.beta
,
betaR
,
Betabinom
.set.seed(208); N <- 10000
k <- rozibeta(N, 2, 3, 0.2, 0.2)
hist(k, probability = TRUE, border = "blue",
main = "Blue = inflated; orange = ordinary beta")
sum(k == 0) / N # Proportion of 0
sum(k == 1) / N # Proportion of 1
Ngrid <- 1000
lines(seq(0, 1, length = Ngrid),
dbeta(seq(0, 1, length = Ngrid), 2, 3), col = "orange")
lines(seq(0, 1, length = Ngrid), col = "blue",
dozibeta(seq(0, 1, length = Ngrid), 2 , 3, 0.2, 0.2))
set.seed(1234); k <- runif(1000)
sum(abs(qozibeta(k, 2, 3) - qbeta(k, 2, 3)) > .Machine$double.eps) # Should be 0
sum(abs(pozibeta(k, 10, 7) - pbeta(k, 10, 7)) > .Machine$double.eps) # Should be 0
Run the code above in your browser using DataLab