
Last chance! 50% off unlimited learning
Sale ends in
param.names(string, S)
dimm(M, hbw = M)
interleave.VGAM(.M, M1, inverse = FALSE)
M
, but is now renamed properly.interleave.VGAM()
.param.names()
, this function returns the parameter names
for $S$ responses,
i.e., string
is returned unchanged if $S=1$,
else paste(string, 1:S, sep = "")
.
For dimm()
, this function returns the number of elements
to be stored for each of the working weight matrices.
They are represented as columns in the matrix wz
in
e.g., vglm.fit()
.
See the matrix-band format described in
Section 18.3.5 of Yee (2015).
For interleave.VGAM()
, this function returns a reordering
of the linear/additive predictors depending on the number of responses.
The arguments presented in Table 18.5 may not be valid
in your version of Yee (2015).
CommonVGAMffArguments
,
VGAM-package
.param.names("shape", 1) # "shape"
param.names("shape", 3) # c("shape1", "shape2", "shape3")
dimm(3, hbw = 1) # Diagonal matrix; the 3 elements need storage.
dimm(3) # A general 3 x 3 symmetrix matrix has 6 unique elements.
dimm(3, hbw = 2) # Tridiagonal matrix; the 3-3 element is 0 and unneeded.
M1 <- 2; ncoly <- 3; M <- ncoly * M1
mynames1 <- param.names("location", ncoly)
mynames2 <- param.names("scale", ncoly)
(parameters.names <- c(mynames1, mynames2)[interleave.VGAM(M, M1 = M1)])
# The following is/was in Yee (2015) and has a poor/deceptive style:
(parameters.names <- c(mynames1, mynames2)[interleave.VGAM(M, M = M1)])
parameters.names[interleave.VGAM(M, M1 = M1, inverse = TRUE)]
Run the code above in your browser using DataLab