
Last chance! 50% off unlimited learning
Sale ends in
logitoffsetlink(theta, offset = 0, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
Links
.logitoffsetlink
with deriv = 0
, the
logitoffsetlink of theta
, i.e.,
log(theta/(1-theta) - K)
when inverse = FALSE
,
and if inverse = TRUE
then
(K + exp(theta))/(1 + exp(theta) + K)
. For deriv = 1
, then the function returns
d eta
/ d theta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
logit
link.
The formula is
logit
link.
When inverse = TRUE
will mean that the value will
lie in the interval $(K / (1+K), 1)$.Links
,
logit
.p <- seq(0.05, 0.99, by = 0.01); myoff <- 0.05
logitoffsetlink(p, myoff)
max(abs(logitoffsetlink(logitoffsetlink(p, myoff),
myoff, inverse = TRUE) - p)) # Should be 0
Run the code above in your browser using DataLab