Learn R Programming

VGAM (version 1.0-2)

hunua: Hunua Ranges Data

Description

The hunua data frame has 392 rows and 18 columns. Altitude is explanatory, and there are binary responses (presence/absence = 1/0 respectively) for 17 plant species.

Usage

data(hunua)

Arguments

Format

This data frame contains the following columns:
agaaus
Agathis australis, or Kauri
beitaw
Beilschmiedia tawa, or Tawa
corlae
Corynocarpus laevigatus
cyadea
Cyathea dealbata
cyamed
Cyathea medullaris
daccup
Dacrydium cupressinum
dacdac
Dacrycarpus dacrydioides
eladen
Elaecarpus dentatus
hedarb
Hedycarya arborea
hohpop
Species name unknown
kniexc
Knightia excelsa, or Rewarewa
kuneri
Kunzea ericoides
lepsco
Leptospermum scoparium
metrob
Metrosideros robusta
neslan
Nestegis lanceolata
rhosap
Rhopalostylis sapida
vitluc
Vitex lucens, or Puriri
altitude
meters above sea level

Source

Dr Neil Mitchell, University of Auckland.

Details

These were collected from the Hunua Ranges, a small forest in southern Auckland, New Zealand. At 392 sites in the forest, the presence/absence of 17 plant species was recorded, as well as the altitude. Each site was of area size 200$m^2$.

See Also

waitakere.

Examples

Run this code
# Fit a GAM using vgam() and compare it with the Waitakere Ranges one
fit.h <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = hunua)
## Not run: 
# plot(fit.h, se = TRUE, lcol = "orange", scol = "orange",
#      llwd = 2, slwd = 2, main = "Orange is Hunua, Blue is Waitakere") ## End(Not run)
head(predict(fit.h, hunua, type = "response"))

fit.w <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = waitakere)
## Not run: 
# plot(fit.w, se = TRUE, lcol = "blue", scol = "blue", add = TRUE) ## End(Not run)
head(predict(fit.w, hunua, type = "response"))   # Same as above? 

Run the code above in your browser using DataLab