## Not run:
# nbolf("p", cutpoint = 2, k = 1, short = FALSE)
# nbolf("p", cutpoint = 2, k = 1, tag = TRUE)
#
# p <- seq(0.02, 0.98, by = 0.01)
# y <- nbolf(p,cutpoint = 2, k = 1)
# y. <- nbolf(p,cutpoint = 2, k = 1, deriv = 1)
# max(abs(nbolf(y,cutpoint = 2, k = 1, inv = TRUE) - p)) # Should be 0
#
# #\ dontrun{ par(mfrow = c(2, 1), las = 1)
# #plot(p, y, type = "l", col = "blue", main = "nbolf()")
# #abline(h = 0, v = 0.5, col = "red", lty = "dashed")
# #
# #plot(p, y., type = "l", col = "blue",
# # main = "(Reciprocal of) first NBOLF derivative") }
#
# # Another example
# nn <- 1000
# x2 <- sort(runif(nn))
# x3 <- runif(nn)
# mymu <- exp( 3 + 1 * x2 - 2 * x3)
# k <- 4
# y1 <- rnbinom(nn, mu = mymu, size = k)
# cutpoints <- c(-Inf, 10, 20, Inf)
# cuty <- Cut(y1, breaks = cutpoints)
# #\ dontrun{ plot(x2, x3, col = cuty, pch = as.character(cuty)) }
# table(cuty) / sum(table(cuty))
# fit <- vglm(cuty ~ x2 + x3, trace = TRUE,
# cumulative(reverse = TRUE, multiple.responses = TRUE,
# parallel = TRUE,
# link = nbolf(cutpoint = cutpoints[2:3], k = k)))
# head(depvar(fit))
# head(fitted(fit))
# head(predict(fit))
# coef(fit)
# coef(fit, matrix = TRUE)
# constraints(fit)
# fit@misc
# ## End(Not run)
Run the code above in your browser using DataLab