alcoff.e <- moffset(alcoff, "6", "Mon", postfix = "*") # Effective day
fit0 <- rcim(alcoff.e, family = poissonff)
## Not run: par(oma = c(0, 0, 4, 0), mfrow = 1:2) # For all plots below too
# ii <- plot(fit0, rcol = "blue", ccol = "orange",
# lwd = 4, ylim = c(-2, 2), # A common ylim
# cylab = "Effective daily effects", rylab = "Hourly effects",
# rxlab = "Hour", cxlab = "Effective day")
# ii@post # Endowed with additional information
# ## End(Not run)
# Negative binomial example
## Not run:
# fit1 <- rcim(alcoff.e, negbinomial, trace = TRUE)
# plot(fit1, ylim = c(-2, 2)) ## End(Not run)
# Univariate normal example
fit2 <- rcim(alcoff.e, uninormal, trace = TRUE)
## Not run: plot(fit2, ylim = c(-200, 400))
# Median-polish example
## Not run:
# fit3 <- rcim(alcoff.e, alaplace1(tau = 0.5), maxit = 1000, trace = FALSE)
# plot(fit3, ylim = c(-200, 250)) ## End(Not run)
# Zero-inflated Poisson example on "crashp" (no 0s in alcoff)
## Not run:
# cbind(rowSums(crashp)) # Easy to see the data
# cbind(colSums(crashp)) # Easy to see the data
# fit4 <- rcim(Rcim(crashp, rbaseline = "5", cbaseline = "Sun"),
# zipoissonff, trace = TRUE)
# plot(fit4, ylim = c(-3, 3)) ## End(Not run)
Run the code above in your browser using DataLab