## Not run:
# polf("p", cutpoint = 2, short = FALSE)
# polf("p", cutpoint = 2, tag = TRUE)
#
# p <- seq(0.01, 0.99, by = 0.01)
# y <- polf(p, cutpoint = 2)
# y. <- polf(p, cutpoint = 2, deriv = 1)
# max(abs(polf(y, cutpoint = 2, inv = TRUE) - p)) # Should be 0
#
# #\ dontrun{ par(mfrow = c(2, 1), las = 1)
# #plot(p, y, type = "l", col = "blue", main = "polf()")
# #abline(h = 0, v = 0.5, col = "orange", lty = "dashed")
# #
# #plot(p, y., type = "l", col = "blue",
# # main = "(Reciprocal of) first POLF derivative")
# #}
#
#
# # Rutherford and Geiger data
# ruge <- data.frame(yy = rep(0:14,
# times = c(57,203,383,525,532,408,273,139,45,27,10,4,0,1,1)))
# with(ruge, length(yy)) # 2608 1/8-minute intervals
# cutpoint <- 5
# ruge <- transform(ruge, yy01 = ifelse(yy <= cutpoint, 0, 1))
# fit <- vglm(yy01 ~ 1, binomialff(link = polf(cutpoint = cutpoint)), ruge)
# coef(fit, matrix = TRUE)
# exp(coef(fit))
#
#
# # Another example
# pdata <- data.frame(x2 = sort(runif(nn <- 1000)))
# pdata <- transform(pdata, x3 = runif(nn))
# pdata <- transform(pdata, mymu = exp( 3 + 1 * x2 - 2 * x3))
# pdata <- transform(pdata, y1 = rpois(nn, lambda = mymu))
# cutpoints <- c(-Inf, 10, 20, Inf)
# pdata <- transform(pdata, cuty = Cut(y1, breaks = cutpoints))
# #\ dontrun{ with(pdata, plot(x2, x3, col = cuty, pch = as.character(cuty))) }
# with(pdata, table(cuty) / sum(table(cuty)))
# fit <- vglm(cuty ~ x2 + x3, data = pdata, trace = TRUE,
# cumulative(reverse = TRUE,
# parallel = TRUE,
# link = polf(cutpoint = cutpoints[2:3]),
# multiple.responses = TRUE))
# head(depvar(fit))
# head(fitted(fit))
# head(predict(fit))
# coef(fit)
# coef(fit, matrix = TRUE)
# constraints(fit)
# fit@misc$earg
# ## End(Not run)
Run the code above in your browser using DataLab