Learn R Programming

VGAM (version 1.0-2)

quasipoissonff: Quasi-Poisson Family Function

Description

Fits a generalized linear model to a Poisson response, where the dispersion parameter is unknown.

Usage

quasipoissonff(link = "loge", onedpar = FALSE, parallel = FALSE, zero = NULL)

Arguments

link
Link function. See Links for more choices.

onedpar
One dispersion parameter? If the response is a matrix, then a separate dispersion parameter will be computed for each response (column), by default. Setting onedpar=TRUE will pool them so that there is only one dispersion parameter to be estimated.

parallel
A logical or formula. Used only if the response is a matrix.

zero
Can be an integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1,2,...,$M$}, where $M$ is the number of columns of the matrix response. See CommonVGAMffArguments for more information.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, vgam, rrvglm, cqo, and cao.

Warning

See the warning in quasibinomialff.

Details

$M$ defined above is the number of linear/additive predictors.

If the dispersion parameter is unknown, then the resulting estimate is not fully a maximum likelihood estimate.

A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the Poisson model. Over-dispersion is more common in practice.

When fitting a Quadratic RR-VGLM, the response is a matrix of $M$, say, columns (e.g., one column per species). Then there will be $M$ dispersion parameters (one per column of the response matrix).

References

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London: Chapman & Hall.

See Also

poissonff, negbinomial, loge, rrvglm, cqo, cao, binomialff, quasibinomialff, quasipoisson.

Examples

Run this code
quasipoissonff()

## Not run: n <- 200; p <- 5; S <- 5
# mydata <- rcqo(n, p, S, fam = "poisson", eq.tol = FALSE)
# myform <- attr(mydata, "formula")
# p1 <- cqo(myform, fam = quasipoissonff, eq.tol = FALSE, data = mydata)
# sort(deviance(p1, history = TRUE))  # A history of all the iterations
# lvplot(p1, y = TRUE, lcol = 1:S, pch = 1:S, pcol = 1:S)
# summary(p1)  # The dispersion parameters are estimated
# ## End(Not run)

Run the code above in your browser using DataLab