## Not run:
# # Example 1: Species packing model:
# n <- 100; p <- 5; S <- 5
# mydata <- rcqo(n, p, S, es.opt = TRUE, eq.max = TRUE)
# names(mydata)
# (myform <- attr(mydata, "formula"))
# fit <- cqo(myform, poissonff, mydata, Bestof = 3) # eq.tol = TRUE
# matplot(attr(mydata, "latvar"), mydata[,-(1:(p-1))], col = 1:S)
# persp(fit, col = 1:S, add = TRUE)
# lvplot(fit, lcol = 1:S, y = TRUE, pcol = 1:S) # The same plot as above
#
# # Compare the fitted model with the 'truth'
# concoef(fit) # The fitted model
# attr(mydata, "concoefficients") # The 'truth'
#
# c(apply(attr(mydata, "latvar"), 2, sd),
# apply(latvar(fit), 2, sd)) # Both values should be approx equal
#
#
# # Example 2: negative binomial data fitted using a Poisson model:
# n <- 200; p <- 5; S <- 5
# mydata <- rcqo(n, p, S, fam = "negbin", sqrt = TRUE)
# myform <- attr(mydata, "formula")
# fit <- cqo(myform, fam = poissonff, dat = mydata) # I.tol = TRUE,
# lvplot(fit, lcol = 1:S, y = TRUE, pcol = 1:S)
# # Compare the fitted model with the 'truth'
# concoef(fit) # The fitted model
# attr(mydata, "concoefficients") # The 'truth'
#
#
# # Example 3: gamma2 data fitted using a Gaussian model:
# n <- 200; p <- 5; S <- 3
# mydata <- rcqo(n, p, S, fam = "gamma2", log.arg = TRUE)
# fit <- cqo(attr(mydata, "formula"),
# fam = gaussianff, data = mydata) # I.tol = TRUE,
# matplot(attr(mydata, "latvar"),
# exp(mydata[, -(1:(p-1))]), col = 1:S) # 'raw' data
# # Fitted model to transformed data:
# lvplot(fit, lcol = 1:S, y = TRUE, pcol = 1:S)
# # Compare the fitted model with the 'truth'
# concoef(fit) # The fitted model
# attr(mydata, "concoefficients") # The 'truth'
# ## End(Not run)
Run the code above in your browser using DataLab