This function returns a data.frame
with the variables.
It is applied to an object which inherits from class "vlm"
(e.g.,
a fitted model of class "vglm"
).
model.framevlm(object, setupsmart = TRUE, wrapupsmart = TRUE, …)
a model object from the VGAM R package
that inherits from a vector linear model (VLM),
e.g., a model of class "vglm"
.
further arguments such as data
, na.action
,
subset
.
See model.frame
for more information on these.
Logical. Arguments to determine whether to use smart prediction.
A data.frame
containing the variables used in
the object
plus those specified in …
.
Since object
is
an object which inherits from class "vlm"
(e.g.,
a fitted model of class "vglm"
),
the method will either returned the saved model frame
used when fitting the model (if any, selected by argument
model = TRUE
) or pass the call used when fitting on to the
default method.
This code implements smart prediction
(see smartpred
).
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
# NOT RUN {
# Illustrates smart prediction
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal,mild, severe) ~ poly(c(scale(let)), 2),
multinomial, data = pneumo, trace = TRUE, x = FALSE)
class(fit)
check1 <- head(model.frame(fit))
check1
check2 <- model.frame(fit, data = head(pneumo))
check2
all.equal(unlist(check1), unlist(check2)) # Should be TRUE
q0 <- head(predict(fit))
q1 <- head(predict(fit, newdata = pneumo))
q2 <- predict(fit, newdata = head(pneumo))
all.equal(q0, q1) # Should be TRUE
all.equal(q1, q2) # Should be TRUE
# }
Run the code above in your browser using DataLab