# NOT RUN { # Illustrates smart prediction pneumo <- transform(pneumo, let = log(exposure.time)) fit <- vglm(cbind(normal, mild, severe) ~ poly(c(scale(let)), 2), propodds, data = pneumo, trace = TRUE, x.arg = FALSE) class(fit) (q0 <- head(predict(fit))) (q1 <- predict(fit, newdata = head(pneumo))) (q2 <- predict(fit, newdata = head(pneumo))) all.equal(q0, q1) # Should be TRUE all.equal(q1, q2) # Should be TRUE head(predict(fit)) head(predict(fit, untransform = TRUE)) p0 <- head(predict(fit, type = "response")) p1 <- head(predict(fit, type = "response", newdata = pneumo)) p2 <- head(predict(fit, type = "response", newdata = pneumo)) p3 <- head(fitted(fit)) all.equal(p0, p1) # Should be TRUE all.equal(p1, p2) # Should be TRUE all.equal(p2, p3) # Should be TRUE predict(fit, type = "terms", se = TRUE) # }
Run the code above in your browser using DataCamp Workspace