# NOT RUN { zdata <- data.frame(x2 = runif(nn <- 1000)) zdata <- transform(zdata, pobs0 = logit( -1 + 1*x2, inverse = TRUE), lambda = loge(-0.5 + 2*x2, inverse = TRUE)) zdata <- transform(zdata, y = rzapois(nn, lambda, pobs0 = pobs0)) with(zdata, table(y)) fit <- vglm(y ~ x2, zapoisson, data = zdata, trace = TRUE) fit <- vglm(y ~ x2, zapoisson, data = zdata, trace = TRUE, crit = "coef") head(fitted(fit)) head(predict(fit)) head(predict(fit, untransform = TRUE)) coef(fit, matrix = TRUE) summary(fit) # Another example ------------------------------ # Data from Angers and Biswas (2003) abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1)) abdata <- subset(abdata, w > 0) Abdata <- data.frame(yy = with(abdata, rep(y, w))) fit3 <- vglm(yy ~ 1, zapoisson, data = Abdata, trace = TRUE, crit = "coef") coef(fit3, matrix = TRUE) Coef(fit3) # Estimate lambda (they get 0.6997 with SE 0.1520) head(fitted(fit3), 1) with(Abdata, mean(yy)) # Compare this with fitted(fit3) # }
Run the code above in your browser using DataCamp Workspace