
Fits a one-inflated positive binomial distribution by maximum likelihood estimation.
oiposbinomial(lpstr1 = "logit", lprob = "logit",
type.fitted = c("mean", "prob", "pobs1", "pstr1", "onempstr1"),
iprob = NULL, gpstr1 = ppoints(9), gprob = ppoints(9),
multiple.responses = FALSE, zero = NULL)
Link functions for the parameter Links
for more choices.
See CommonVGAMffArguments
also.
For the one-deflated model see below.
See CommonVGAMffArguments
and fittedvlm
.
For initial values;
see CommonVGAMffArguments
.
Logical.
See binomialff
and posbinomial
.
See CommonVGAMffArguments
for information.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
These functions are based on
size
in
roiposbinom
is oiposbinomial()
are
# NOT RUN {
size <- 10 # Number of trials; N in the notation above
nn <- 200
odata <- data.frame(pstr1 = logit( 0, inverse = TRUE), # 0.50
mubin1 = logit(-1, inverse = TRUE), # Mean of usual binomial
svec = rep(size, length = nn),
x2 = runif(nn))
odata <- transform(odata,
mubin2 = logit(-1 + x2, inverse = TRUE))
odata <- transform(odata,
y1 = roiposbinom(nn, svec, pr = mubin1, pstr1 = pstr1),
y2 = roiposbinom(nn, svec, pr = mubin2, pstr1 = pstr1))
with(odata, table(y1))
fit1 <- vglm(y1 / svec ~ 1, oiposbinomial, data = odata,
weights = svec, trace = TRUE, crit = "coef")
fit2 <- vglm(y2 / svec ~ x2, oiposbinomial, data = odata,
weights = svec, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1) # Useful for intercept-only models
head(fitted(fit1, type = "pobs1")) # Estimate of P(Y = 1)
head(fitted(fit1))
with(odata, mean(y1)) # Compare this with fitted(fit1)
summary(fit1)
# }
Run the code above in your browser using DataLab