Density, distribution function, and random generation for the (one parameter) bivariate Gaussian copula distribution.
dbinormcop(x1, x2, rho = 0, log = FALSE)
pbinormcop(q1, q2, rho = 0)
rbinormcop(n, rho = 0)
dbinormcop
gives the density,
pbinormcop
gives the distribution function, and
rbinormcop
generates random deviates (a two-column matrix).
vector of quantiles.
The x1
and x2
should be in the interval
q1
and q2
.
number of observations.
Same as rnorm
.
the correlation parameter.
Should be in the interval
Logical.
If TRUE
then the logarithm is returned.
T. W. Yee
See binormalcop
, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation,
for the formula of the
cumulative distribution function and other details.
binormalcop
,
binormal
.
if (FALSE) edge <- 0.01 # A small positive value
N <- 101; x <- seq(edge, 1.0 - edge, len = N); Rho <- 0.7
ox <- expand.grid(x, x)
zedd <- dbinormcop(ox[, 1], ox[, 2], rho = Rho, log = TRUE)
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5)
zedd <- pbinormcop(ox[, 1], ox[, 2], rho = Rho)
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5)
Run the code above in your browser using DataLab