Last chance! 50% off unlimited learning
Sale ends in
Maximum likelihood estimation of the 2-parameter inverse Lomax distribution.
inv.lomax(lscale = "loglink", lshape2.p = "loglink", iscale = NULL,
ishape2.p = NULL, imethod = 1, gscale = exp(-5:5),
gshape2.p = exp(-5:5), probs.y = c(0.25, 0.5, 0.75),
zero = "shape2.p")
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
Parameter link functions applied to the
(positive) parameters Links
for more choices.
See CommonVGAMffArguments
for information.
For imethod = 2
a good initial value for
ishape2.p
is needed to obtain a good estimate for
the other parameter.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
T. W. Yee
The 2-parameter inverse Lomax distribution is the 4-parameter
generalized beta II distribution with shape parameters
The inverse Lomax distribution has density
scale
,
and p
is a shape parameter.
The mean does not seem to exist; the median is returned
as the fitted values.
This family function handles multiple responses.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
inv.lomax
,
genbetaII
,
betaII
,
dagum
,
sinmad
,
fisk
,
lomax
,
paralogistic
,
inv.paralogistic
,
simulate.vlm
.
idata <- data.frame(y = rinv.lomax(2000, sc = exp(2), exp(1)))
fit <- vglm(y ~ 1, inv.lomax, data = idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.lomax(iscale = exp(3)), data = idata,
trace = TRUE, epsilon = 1e-8, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Run the code above in your browser using DataLab