Estimate the four parameters of the (bivariate) \(N_1\)--Poisson copula mixed data type model by maximum likelihood estimation.
N1poisson(lmean = "identitylink", lsd = "loglink",
lvar = "loglink", llambda = "loglink", lapar = "rhobitlink",
zero = c(if (var.arg) "var" else "sd", "apar"),
doff = 5, nnodes = 20, copula = "gaussian",
var.arg = FALSE, imethod = 1, isd = NULL,
ilambda = NULL, iapar = NULL)An object of class "vglmff"
(see vglmff-class).
The object is used by modelling functions
such as vglm
and vgam.
Details at CommonVGAMffArguments.
See Links for more link function choices.
The second response is primarily controlled by
the parameter \(\lambda_2\).
Initial values.
Details at CommonVGAMffArguments.
Details at CommonVGAMffArguments.
Numeric of unit length, the denominator offset
\(\delta>0\).
A monotonic transformation
\(\Delta^* = \lambda_2^{2/3} /
(|\delta| + \lambda_2^{2/3})\)
is taken to map the Poisson mean onto the
unit interval.
This argument is \(\delta\).
The default reflects the property that the normal
approximation to the Poisson work wells for
\(\lambda_2 \geq 10\) or thereabouts, hence
that value is mapped to the origin by
qnorm.
That's because 10**(2/3) is approximately 5.
It is known that the \(\lambda_2\) rate
parameter raised to
the power of \(2/3\) is a transformation
that approximates the normal density more
closely.
Alternatively,
delta may be assigned a single
negative value. If so, then
\(\Delta^* = \log(1 + \lambda_2)
/ [|\delta| + \log(1 + \lambda_2)]\)
is used.
For this, doff = -log1p(10) is
suggested.
Details at N1binomial.
See uninormal.
T. W. Yee
The bivariate response comprises
\(Y_1\) from a linear model
having parameters
mean and sd for
\(\mu_1\) and \(\sigma_1\),
and the Poisson count
\(Y_2\) having parameter
lambda for its mean \(\lambda_2\).
The
joint probability density/mass function is
\(P(y_1, Y_2 = y_2) = \phi_1(y_1; \mu_1, \sigma_1)
\exp(-h^{-1}(\Delta))
[h^{-1}(\Delta)]^{y_2} / y_2!\)
where \(\Delta\) adjusts \(\lambda_2\)
according to the association parameter
\(\alpha\).
The quantity \(\Delta\) is
\(\Phi((\Phi^{-1}(h(\lambda_2)) -
\alpha Z_1) / \sqrt{1 - \alpha^2})\)
where \(h\) maps
\(\lambda_2\) onto the unit interval.
The quantity \(Z_1\) is \((Y_1-\mu_1) / \sigma_1\).
Thus there is an underlying bivariate normal
distribution, and a copula is used to bring the
two marginal distributions together.
Here,
\(-1 < \alpha < 1\), and
\(\Phi\) is the
cumulative distribution function
pnorm
of a standard univariate normal.
The first marginal
distribution is a normal distribution
for the linear model.
The second column of the response must
have nonnegative integer values.
When \(\alpha = 0\)
then \(\Delta=\Delta^*\).
Together, this family function combines
uninormal and
poissonff.
If the response are correlated then
a more efficient joint analysis
should result.
The second marginal distribution allows for overdispersion relative to an ordinary Poisson distribution---a property due to \(\alpha\).
This VGAM family function cannot handle multiple responses. Only a two-column matrix is allowed. The two-column fitted value matrix has columns \(\mu_1\) and \(\lambda_2\).
rN1pois,
N1binomial,
binormalcop,
uninormal,
poissonff,
dpois.
apar <- rhobitlink(0.3, inverse = TRUE)
nn <- 1000; mymu <- 1; sdev <- exp(1)
lambda <- loglink(1, inverse = TRUE)
mat <- rN1pois(nn, mymu, sdev, lambda, apar)
npdata <- data.frame(y1 = mat[, 1], y2 = mat[, 2])
with(npdata, var(y2) / mean(y2)) # Overdispersion
fit1 <- vglm(cbind(y1, y2) ~ 1, N1poisson,
npdata, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1)
head(fitted(fit1))
summary(fit1)
confint(fit1)
Run the code above in your browser using DataLab