Last chance! 50% off unlimited learning
Sale ends in
Estimation of the parameter of the standard and nonstandard log-gamma distribution.
lgamma1(lshape = "loglink", ishape = NULL)
lgamma3(llocation = "identitylink", lscale = "loglink",
lshape = "loglink", ilocation = NULL, iscale = NULL, ishape = 1,
zero = c("scale", "shape"))
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
Parameter link function applied to the
location parameter Links
for more choices.
Parameter link function applied to
the positive shape parameter Links
for more choices.
Initial value for
Initial value for
An integer-valued vector specifying which
linear/additive predictors are modelled as intercepts only.
The values must be from the set {1,2,3}.
The default value means none are modelled as intercept-only terms.
See CommonVGAMffArguments
for more information.
T. W. Yee
The probability density function of the standard log-gamma
distribution is given by
digamma(k)
(returned as
the fitted values) and its variance is trigamma(k)
.
For the non-standard log-gamma distribution, one replaces a + b*digamma(k)
(returned as
the fitted values) and b^2 * trigamma(k)
, respectively.
Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications, pages 48--49, London: Imperial College Press.
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd edition, Volume 2, p.89, New York: Wiley.
rlgamma
,
gengamma.stacy
,
prentice74
,
gamma1
,
lgamma
.
ldata <- data.frame(y = rlgamma(100, shape = exp(1)))
fit <- vglm(y ~ 1, lgamma1, ldata, trace = TRUE, crit = "coef")
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)
ldata <- data.frame(x2 = runif(nn <- 5000)) # Another example
ldata <- transform(ldata, loc = -1 + 2 * x2, Scale = exp(1))
ldata <- transform(ldata, y = rlgamma(nn, loc, sc = Scale, sh = exp(0)))
fit2 <- vglm(y ~ x2, lgamma3, data = ldata, trace = TRUE, crit = "c")
coef(fit2, matrix = TRUE)
Run the code above in your browser using DataLab