Learn R Programming

VGAM (version 1.1-14)

plotqtplot.lmscreg: Quantile Plot for LMS Quantile Regression

Description

Plots the quantiles associated with a LMS quantile regression.

Usage

plotqtplot.lmscreg(fitted.values, object, newdata = NULL,
    percentiles = object@misc$percentiles, lp = NULL,
    add.arg = FALSE, y = if (length(newdata)) FALSE else TRUE,
    spline.fit = FALSE, label = TRUE, size.label = 0.06,
    xlab = NULL, ylab = "",
    pch = par()$pch, pcex = par()$cex, pcol.arg = par()$col,
    xlim = NULL, ylim = NULL,
    llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
    tcol.arg = par()$col, tadj = 1, ...)

Arguments

Value

The matrix of fitted values.

Details

The above graphical parameters offer some flexibility when plotting the quantiles.

References

Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine, 23, 2295--2315.

See Also

qtplot.lmscreg.

Examples

Run this code
if (FALSE) {
fit <- vgam(BMI ~ s(age, df = c(4,2)), lms.bcn(zero = 1), data = bmi.nz)
qtplot(fit)
qtplot(fit, perc = c(25,50,75,95), lcol = "blue", tcol = "blue", llwd = 2)
}

Run the code above in your browser using DataLab