powered by
Plots the quantiles associated with a LMS quantile regression.
plotqtplot.lmscreg(fitted.values, object, newdata = NULL, percentiles = object@misc$percentiles, lp = NULL, add.arg = FALSE, y = if (length(newdata)) FALSE else TRUE, spline.fit = FALSE, label = TRUE, size.label = 0.06, xlab = NULL, ylab = "", pch = par()$pch, pcex = par()$cex, pcol.arg = par()$col, xlim = NULL, ylim = NULL, llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd, tcol.arg = par()$col, tadj = 1, ...)
The matrix of fitted values.
The above graphical parameters offer some flexibility when plotting the quantiles.
Yee, T. W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine, 23, 2295--2315.
qtplot.lmscreg.
qtplot.lmscreg
if (FALSE) { fit <- vgam(BMI ~ s(age, df = c(4,2)), lms.bcn(zero = 1), data = bmi.nz) qtplot(fit) qtplot(fit, perc = c(25,50,75,95), lcol = "blue", tcol = "blue", llwd = 2) }
Run the code above in your browser using DataLab