Last chance! 50% off unlimited learning
Sale ends in
Maximum likelihood estimation of the shape parameter of a univariate skew-normal distribution.
skewnormal(lshape = "identitylink", ishape = NULL, nsimEIM = NULL)
See Links
and
CommonVGAMffArguments
.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
It is well known that the EIM of Azzalini's skew-normal distribution is singular for skewness parameter tending to zero, and thus produces influential problems.
The univariate skew-normal distribution has a density
function that can be written
The mean of the distribution is
nsimEIM
argument is used.
Azzalini, A. A. (1985). A class of distributions which include the normal. Scandinavian Journal of Statistics, 12, 171--178.
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society, Series B, Methodological, 61, 579--602.
# NOT RUN {
sdata <- data.frame(y1 = rskewnorm(nn <- 1000, shape = 5))
fit1 <- vglm(y1 ~ 1, skewnormal, data = sdata, trace = TRUE)
coef(fit1, matrix = TRUE)
head(fitted(fit1), 1)
with(sdata, mean(y1))
# }
# NOT RUN {
with(sdata, hist(y1, prob = TRUE))
x <- with(sdata, seq(min(y1), max(y1), len = 200))
with(sdata, lines(x, dskewnorm(x, shape = Coef(fit1)), col = "blue"))
# }
# NOT RUN {
sdata <- data.frame(x2 = runif(nn))
sdata <- transform(sdata, y2 = rskewnorm(nn, shape = 1 + 2*x2))
fit2 <- vglm(y2 ~ x2, skewnormal, data = sdata, trace = TRUE, crit = "coef")
summary(fit2)
# }
Run the code above in your browser using DataLab