Last chance! 50% off unlimited learning
Sale ends in
Estimates one of the parameters of the Pareto(I) distribution by maximum likelihood estimation. Also includes the upper truncated Pareto(I) distribution.
paretoff(scale = NULL, lshape = "loglink")
truncpareto(lower, upper, lshape = "loglink", ishape = NULL, imethod = 1)
Parameter link function applied to the parameter Links
for more choices.
A log link is the default because
Numeric.
The parameter min(y)
is used,
where y
is the response vector.
Numeric.
Lower and upper limits for the truncated Pareto distribution.
Each must be positive and of length 1.
They are called
Numeric.
Optional initial value for the shape parameter.
A NULL
means a value is obtained internally.
If failure to converge occurs try specifying a value, e.g., 1 or 2.
See CommonVGAMffArguments
for information.
If failure to converge occurs then try specifying a value for
ishape
.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The usual or unbounded Pareto distribution has two
parameters (called paretoff
estimates only
min(y)
where y
is the
response. Consequently, using the default argument
values, the standard errors are incorrect when one does a
summary
on the fitted object. If the user inputs
a value for alpha
then it is assumed known with
this value and then summary
on the fitted object
should be correct. Numerical problems may occur for small
A random variable
The Pareto distribution, which is used a lot in economics,
has a probability density function that can be written
min(y)
is used.
The parameter
The upper truncated Pareto distribution
has a probability density function that can be written
Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.
Aban, I. B., Meerschaert, M. M. and Panorska, A. K. (2006). Parameter estimation for the truncated Pareto distribution, Journal of the American Statistical Association, 101(473), 270--277.
Pareto
,
Truncpareto
,
paretoIV
,
gpd
,
benini1
.
# NOT RUN {
alpha <- 2; kay <- exp(3)
pdata <- data.frame(y = rpareto(n = 1000, scale = alpha, shape = kay))
fit <- vglm(y ~ 1, paretoff, data = pdata, trace = TRUE)
fit@extra # The estimate of alpha is here
head(fitted(fit))
with(pdata, mean(y))
coef(fit, matrix = TRUE)
summary(fit) # Standard errors are incorrect!!
# Here, alpha is assumed known
fit2 <- vglm(y ~ 1, paretoff(scale = alpha), data = pdata, trace = TRUE)
fit2@extra # alpha stored here
head(fitted(fit2))
coef(fit2, matrix = TRUE)
summary(fit2) # Standard errors are okay
# Upper truncated Pareto distribution
lower <- 2; upper <- 8; kay <- exp(2)
pdata3 <- data.frame(y = rtruncpareto(n = 100, lower = lower,
upper = upper, shape = kay))
fit3 <- vglm(y ~ 1, truncpareto(lower, upper), data = pdata3, trace = TRUE)
coef(fit3, matrix = TRUE)
c(fit3@misc$lower, fit3@misc$upper)
# }
Run the code above in your browser using DataLab