Last chance! 50% off unlimited learning
Sale ends in
Maximum likelihood estimation of the 3-parameter Dagum distribution.
dagum(lscale = "loglink", lshape1.a = "loglink", lshape2.p = "loglink",
iscale = NULL, ishape1.a = NULL, ishape2.p = NULL, imethod = 1,
lss = TRUE, gscale = exp(-5:5), gshape1.a = seq(0.75, 4, by = 0.25),
gshape2.p = exp(-5:5), probs.y = c(0.25, 0.5, 0.75), zero = "shape")
See CommonVGAMffArguments
for important information.
Parameter link functions applied to the
(positive) parameters a
, scale
, and p
.
See Links
for more choices.
See CommonVGAMffArguments
for information.
For imethod = 2
a good initial value for
ishape2.p
is needed to obtain a good estimate for
the other parameter.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The 3-parameter Dagum distribution is the 4-parameter
generalized beta II distribution with shape parameter
The Dagum distribution has a cumulative distribution function
scale
,
and the others are shape parameters.
The mean is
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Dagum
,
genbetaII
,
betaII
,
sinmad
,
fisk
,
inv.lomax
,
lomax
,
paralogistic
,
inv.paralogistic
,
simulate.vlm
.
# NOT RUN {
ddata <- data.frame(y = rdagum(n = 3000, scale = exp(2),
shape1 = exp(1), shape2 = exp(1)))
fit <- vglm(y ~ 1, dagum(lss = FALSE), data = ddata, trace = TRUE)
fit <- vglm(y ~ 1, dagum(lss = FALSE, ishape1.a = exp(1)),
data = ddata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
# }
Run the code above in your browser using DataLab