Maximum likelihood estimation of the 2-parameter Fisk distribution.
fisk(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE,
gscale = exp(-5:5), gshape1.a = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
See CommonVGAMffArguments
for
important information.
Parameter link functions applied to the
(positive) parameters scale
.
See Links
for more choices.
See CommonVGAMffArguments
for information.
For imethod = 2
a good initial value for
iscale
is needed to obtain a good estimate for
the other parameter.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
T. W. Yee
The 2-parameter Fisk (aka log-logistic) distribution
is the 4-parameter
generalized beta II distribution with
shape parameter
The Fisk distribution has density
scale
,
and
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Fisk
,
genbetaII
,
betaII
,
dagum
,
sinmad
,
inv.lomax
,
lomax
,
paralogistic
,
inv.paralogistic
,
simulate.vlm
.
fdata <- data.frame(y = rfisk(200, shape = exp(1), exp(2)))
fit <- vglm(y ~ 1, fisk(lss = FALSE), data = fdata, trace = TRUE)
fit <- vglm(y ~ 1, fisk(ishape1.a = exp(2)), fdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Run the code above in your browser using DataLab