Last chance! 50% off unlimited learning
Sale ends in
Density, distribution function, quantile function and random
generation for the generalized gamma distribution with
scale parameter scale
,
and parameters d
and k
.
dgengamma.stacy(x, scale = 1, d, k, log = FALSE)
pgengamma.stacy(q, scale = 1, d, k,
lower.tail = TRUE, log.p = FALSE)
qgengamma.stacy(p, scale = 1, d, k,
lower.tail = TRUE, log.p = FALSE)
rgengamma.stacy(n, scale = 1, d, k)
dgengamma.stacy
gives the density,
pgengamma.stacy
gives the distribution function,
qgengamma.stacy
gives the quantile function, and
rgengamma.stacy
generates random deviates.
vector of quantiles.
vector of probabilities.
number of observations.
Same as in runif
.
the (positive) scale parameter
the (positive) parameters
Logical.
If log = TRUE
then the logarithm of the density is returned.
T. W. Yee and Kai Huang
See gengamma.stacy
, the VGAM family function
for estimating the generalized gamma distribution
by maximum likelihood estimation,
for formulae and other details.
Apart from n
, all the above arguments may be vectors and
are recyled to the appropriate length if necessary.
Stacy, E. W. and Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7, 349--358.
gengamma.stacy
.
if (FALSE) x <- seq(0, 14, by = 0.01); d <- 1.5; Scale <- 2; k <- 6
plot(x, dgengamma.stacy(x, Scale, d = d, k = k), type = "l",
col = "blue", ylim = 0:1,
main = "Blue is density, orange is the CDF",
sub = "Purple are 5,10,...,95 percentiles", las = 1, ylab = "")
abline(h = 0, col = "blue", lty = 2)
lines(qgengamma.stacy(seq(0.05, 0.95, by = 0.05), Scale, d = d, k = k),
dgengamma.stacy(qgengamma.stacy(seq(0.05, 0.95, by = 0.05),
Scale, d = d, k = k),
Scale, d = d, k = k), col = "purple", lty = 3, type = "h")
lines(x, pgengamma.stacy(x, Scale, d = d, k = k), col = "orange")
abline(h = 0, lty = 2)
Run the code above in your browser using DataLab