
Last chance! 50% off unlimited learning
Sale ends in
Maximum likelihood estimation for the exponential distribution.
exponential(link = "loglink", location = 0, expected = TRUE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50,
ishrinkage = 0.95, parallel = FALSE, zero = NULL)
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
Parameter link function applied to the positive parameter Links
for more choices.
Numeric of length 1, the known location parameter,
Logical. If TRUE
Fisher scoring is used,
otherwise Newton-Raphson. The latter is usually faster.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
T. W. Yee
The family function assumes the response
Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.
amlexponential
,
gpd
,
laplace
,
expgeometric
,
explogff
,
poissonff
,
mix2exp
,
freund61
,
simulate.vlm
,
Exponential
.
edata <- data.frame(x2 = runif(nn <- 100) - 0.5)
edata <- transform(edata, x3 = runif(nn) - 0.5)
edata <- transform(edata, eta = 0.2 - 0.7 * x2 + 1.9 * x3)
edata <- transform(edata, rate = exp(eta))
edata <- transform(edata, y = rexp(nn, rate = rate))
with(edata, stem(y))
fit.slow <- vglm(y ~ x2 + x3, exponential, data = edata, trace = TRUE)
fit.fast <- vglm(y ~ x2 + x3, exponential(exp = FALSE), data = edata,
trace = TRUE, crit = "coef")
coef(fit.slow, mat = TRUE)
summary(fit.slow)
# Compare results with a GPD. Has a threshold.
threshold <- 0.5
gdata <- data.frame(y1 = threshold + rexp(n = 3000, rate = exp(1.5)))
fit.exp <- vglm(y1 ~ 1, exponential(location = threshold), data = gdata)
coef(fit.exp, matrix = TRUE)
Coef(fit.exp)
logLik(fit.exp)
fit.gpd <- vglm(y1 ~ 1, gpd(threshold = threshold), data = gdata)
coef(fit.gpd, matrix = TRUE)
Coef(fit.gpd)
logLik(fit.gpd)
Run the code above in your browser using DataLab