Estimates the two parameters of the inverse Gaussian distribution by maximum likelihood estimation.
inv.gaussianff(lmu = "loglink", llambda = "loglink",
imethod = 1, ilambda = NULL,
parallel = FALSE, ishrinkage = 0.99, zero = NULL)
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
rrvglm
and vgam
.
Parameter link functions for the Links
for more choices.
See CommonVGAMffArguments
for more information.
If parallel = TRUE
then the constraint is not applied
to the intercept.
See CommonVGAMffArguments
for information.
T. W. Yee
The standard (``canonical'') form of the
inverse Gaussian distribution has a density
that can be written as
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd edition, Volume 1, New York: Wiley.
Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.
Inv.gaussian
,
waldff
,
bisa
.
The R package SuppDists has several functions for evaluating the density, distribution function, quantile function and generating random numbers from the inverse Gaussian distribution.
idata <- data.frame(x2 = runif(nn <- 1000))
idata <- transform(idata, mymu = exp(2 + 1 * x2),
Lambda = exp(2 + 1 * x2))
idata <- transform(idata, y = rinv.gaussian(nn, mu = mymu, Lambda))
fit1 <- vglm(y ~ x2, inv.gaussianff, data = idata, trace = TRUE)
rrig <- rrvglm(y ~ x2, inv.gaussianff, data = idata, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(rrig, matrix = TRUE)
Coef(rrig)
summary(fit1)
Run the code above in your browser using DataLab