Last chance! 50% off unlimited learning
Sale ends in
Computes the inv.chisqMlink
transformation, its inverse and
the first two derivatives.
inv.chisqMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)
For deriv = 0
, the inv.chisqMlink
transformation of
theta
when inverse = FALSE
.
If inverse = TRUE
, then the inverse exp(-theta) + 2
.
For deriv = 1
,
eta
/
theta
when inverse = FALSE
.
If inverse = TRUE
, then
theta
/
eta
as a function of
theta
.
When deriv = 2
, the second derivatives in
terms of theta
are returned.
Numeric or character. This is
See Links
.
V. Miranda and Thomas W. Yee.
This link functions models the mean of the
inverse chi--squared distribution,
inv.chisqff
.
It is defined as
inv.chisqff
.
Notice, however, that df
for this link function is
Numerical values of NA
or NaN
.
inv.chisqff
,
Links
.
## E1. Modelling the mean of the exponential distribution ##
set.seed(17010502)
dof <- 2.5
isq.data <- data.frame(x2 = runif(100, 0, 1))
isq.data <- transform(isq.data, y = rinv.chisq(n = 100, df = dof + x2))
# \donttest{
hist(isq.data$y)
# }
fit.inv <- vglm(y ~ x2, family = inv.chisqff(link = "inv.chisqMlink"),
data = isq.data, trace = TRUE )
coef(fit.inv, matrix = TRUE)
summary(fit.inv)
## E3. Special values in a matrix ##
(theta <- matrix(c(Inf, -Inf, NA, NaN, 1 , 2, 3, 4), ncol = 4, nrow = 2))
inv.chisqMlink(theta = theta) ## NaNs for df = theta <= 2
## E2. inv.chisqMlink() and its inverse ##
theta <- 0.1 + 1:5 # dof = df
my.diff <- theta - inv.chisqMlink(inv.chisqMlink(theta = theta), inverse =TRUE)
summary(my.diff) # Zero
Run the code above in your browser using DataLab