Learn R Programming

VIM (version 4.6.0)

regressionImp: Regression Imputation

Description

Impute missing values based on a regression model.

Usage

regressionImp(formula, data, family = "AUTO", robust = FALSE, imp_var = TRUE, imp_suffix = "imp", mod_cat = FALSE)

Arguments

formula
model formula to impute one variable
data
A data.frame or survey object containing the data
family
family argument for "glm" ("AUTO" tries to choose automatically, only really tested option!!!)
robust
TRUE/FALSE if robust regression should be used
imp_var
TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be created show the imputation status
imp_suffix
suffix used for TF imputation variables
mod_cat
TRUE/FALSE if TRUE for categorical variables the level with the highest prediction probability is selected, otherwise it is sampled according to the probabilities.

Value

the imputed data set.

Details

"lm" is used for family "normal" and glm for all other families. (Robust=TRUE: lmrob, glmrob)

References

A. Kowarik, M. Templ (2016) Imputation with R package VIM. Journal of Statistical Software, 74(7), 1-16.

Examples

Run this code

data(sleep)
sleepImp1 <- regressionImp(Dream+NonD~BodyWgt+BrainWgt,data=sleep)
sleepImp2 <- regressionImp(Sleep+Gest+Span+Dream+NonD~BodyWgt+BrainWgt,data=sleep)

data(testdata)
imp_testdata1 <- regressionImp(b1+b2~x1+x2,data=testdata$wna)
imp_testdata3 <- regressionImp(x1~x2,data=testdata$wna,robust=TRUE)

Run the code above in your browser using DataLab