This function is used by the VIM GUI for transformation and
standardization of the data.
prepare (x, scaling = c("none","classical","MCD","robust","onestep"),
transformation = c("none","minus","reciprocal","logarithm",
"exponential","boxcox","clr","ilr","alr"),
alpha = NULL, powers = NULL, start = 0, alrVar)# S3 method for data.frame
prepare(
x,
scaling = c("none", "classical", "MCD", "robust", "onestep"),
transformation = c("none", "minus", "reciprocal", "logarithm", "exponential",
"boxcox", "clr", "ilr", "alr"),
alpha = NULL,
powers = NULL,
start = 0,
alrVar
)
# S3 method for survey.design
prepare(
x,
scaling = c("none", "classical", "MCD", "robust", "onestep"),
transformation = c("none", "minus", "reciprocal", "logarithm", "exponential",
"boxcox", "clr", "ilr", "alr"),
alpha = NULL,
powers = NULL,
start = 0,
alrVar
)
# S3 method for default
prepare(
x,
scaling = c("none", "classical", "MCD", "robust", "onestep"),
transformation = c("none", "minus", "reciprocal", "logarithm", "exponential",
"boxcox", "clr", "ilr", "alr"),
alpha = NULL,
powers = NULL,
start = 0,
alrVar
)
a vector, matrix or data.frame.
the scaling to be applied to the data. Possible values are
"none", "classical", MCD, "robust" and
"onestep".
the transformation of the data. Possible values are
"none", "minus", "reciprocal", "logarithm",
"exponential", "boxcox", "clr", "ilr" and
"alr".
a numeric parameter controlling the size of the subset for the
MCD (if scaling="MCD"). See covMcd.
a numeric vector giving the powers to be used in the Box-Cox
transformation (if transformation="boxcox"). If NULL, the
powers are calculated with function powerTransform.
a constant to be added prior to Box-Cox transformation (if
transformation="boxcox").
variable to be used as denominator in the additive logratio
transformation (if transformation="alr").
Transformed and standardized data.
Transformation:
"none": no transformation is used.
"logarithm": compute the the logarithm (to the base 10).
"boxcox": apply a Box-Cox transformation. Powers may be specified or
calculated with the function powerTransform.
Standardization:
"none": no standardization is used.
"classical": apply a z-Transformation on each variable by
using function scale.
"robust": apply a robustified z-Transformation by using median
and MAD.
# NOT RUN {
data(sleep, package = "VIM")
x <- sleep[, c("BodyWgt", "BrainWgt")]
prepare(x, scaling = "robust", transformation = "logarithm")
# }
Run the code above in your browser using DataLab