VSURF
function. It is designed to be executed after the thresholding step
VSURF.thres
.## S3 method for class 'default':
VSURF.interp(x, y, vars, nfor.interp = 25, nsd = 1, ...)## S3 method for class 'formula':
VSURF.interp(formula, data, ..., na.action = na.fail)
## S3 method for class 'default':
VSURF.interp.parallel(x, y, vars, nfor.interp = 25,
nsd = 1, clusterType = "PSOCK", ncores = detectCores() - 1, ...)
## S3 method for class 'formula':
VSURF.interp.parallel(formula, data, ...,
na.action = na.fail)
randomForest
it is only used with the formula-type call.)varselect.thres
of
VSURF.thres
function).err.interp
is multiplied. See details below.randomForest
function (see ?randomForest for further information)VSURF.interp
, which is a list with the
following components:VSURF.parallel
(only if parallel version of VSURF is used).VSURF.parallel
(only if parallel version of VSURF is used).VSURF
.nfor.interp
embedded random forests models are grown, starting with
the random forest build with only the most important variable and ending
with all variables. Then, err.min
the minimum mean out-of-bag (OOB)
error rate of these models and its associated standard deviation
sd.min
are computed. Finally, the smallest model (and hence its
corresponding variables) having a mean OOB error less than err.min
+
nsd
* sd.min
is selected.VSURF
, tune
data(iris)
iris.thres <- VSURF.thres(x=iris[,1:4], y=iris[,5], ntree=100, nfor.thres=20)
iris.interp <- VSURF.interp(x=iris[,1:4], y=iris[,5], vars=iris.thres$varselect.thres,
nfor.interp=10)
iris.interp
# A more interesting example with toys data (see \code{\link{toys}})
# (a few minutes to execute)
data(toys)
toys.thres <- VSURF.thres(x=toys$x, y=toys$y)
toys.interp <- VSURF.interp(x=toys$x, y=toys$y, vars=toys.thres$varselect.thres)
toys.interp
Run the code above in your browser using DataLab