VSURF
function. For
refined variable selection, see VSURF other steps:
VSURF.interp
and VSURF.pred
.## S3 method for class 'default':
VSURF.thres(x, y, ntree = 2000,
mtry = max(floor(ncol(x)/3), 1), nfor.thres = 50, nmin = 1, ...)## S3 method for class 'formula':
VSURF.thres(formula, data, ..., na.action = na.fail)
## S3 method for class 'default':
VSURF.thres.parallel(x, y, ntree = 2000,
mtry = max(floor(ncol(x)/3), 1), nfor.thres = 50, nmin = 1,
clusterType = "PSOCK", ncores = detectCores() - 1, ...)
## S3 method for class 'formula':
VSURF.thres.parallel(formula, data, ...,
na.action = na.fail)
randomForest
it is only used with the formula-type call.)randomForest
parameter.randomForest
parameter.randomForest
function (see ?randomForest for further information)VSURF.thres
, which is a list with the
following components:varselect.thres
variables.$x
contains the mean importances in decreasing order.
$ix
contains indices of the variables.ord.imp
.VSURF.parallel
(only if parallel version of VSURF is used).VSURF.parallel
(only if parallel version of VSURF is used).VSURF
.nfor.thres
random forests are computed using the function
randomForest
with arguments importance=TRUE
. Then variables
are sorted according to their mean variable importance (VI), in decreasing
order. This order is kept all along the procedure. Next, a threshold is
computed: min.thres
, the minimum predicted value of a pruned CART
tree fitted to the curve of the standard deviations of VI. Finally, the
actual thresholding is performed: only variables with a mean VI larger than
nmin
* min.thres
are kept.VSURF
, tune
data(iris)
iris.thres <- VSURF.thres(x=iris[,1:4], y=iris[,5], ntree=100, nfor.thres=20)
iris.thres
# A more interesting example with toys data (see \code{\link{toys}})
# (a few minutes to execute)
data(toys)
toys.thres <- VSURF.thres(x=toys$x, y=toys$y)
toys.thres
Run the code above in your browser using DataLab