Computes the pdf, cdf, value at risk and expected shortfall for the Student's \(t\) distribution due to Gosset (1908) given by $$\begin{array}{ll} &\displaystyle f (x) = \frac {\Gamma \left( \frac {n + 1}{2} \right)}{\sqrt{n \pi} \Gamma \left( \frac {n}{2} \right)} \left( 1 + \frac {x^2}{n} \right)^{-\frac {n + 1}{2}}, \\ &\displaystyle F (x) = \frac {1 + {\rm sign} (x)}{2} - \frac {{\rm sign} (x)}{2} I_{\frac {n}{x^2 + n}} \left( \frac {n}{2}, \frac {1}{2} \right), \\ &\displaystyle {\rm VaR}_p (X) = \sqrt{n} {\rm sign} \left( p - \frac {1}{2} \right) \sqrt{\frac {1}{I_a^{-1} \left( \frac {n}{2}, \frac {1}{2} \right)} - 1}, \\ &\displaystyle \quad \mbox{ where $a = 2p$ if $p < 1/2$, $a = 2(1 - p)$ if $p \geq 1/2$,} \\ &\displaystyle {\rm ES}_p (X) = \frac {\sqrt{n}}{p} \int_0^p {\rm sign} \left( v - \frac {1}{2} \right) \sqrt{\frac {1}{I_a^{-1} \left( \frac {n}{2}, \frac {1}{2} \right)} - 1} dv, \\ &\displaystyle \quad \mbox{ where $a = 2v$ if $v < 1/2$, $a = 2(1 - v)$ if $v \geq 1/2$} \end{array}$$ for \(-\infty < x < \infty\), \(0 < p < 1\), and \(n > 0\), the degree of freedom parameter.
dT(x, n=1, log=FALSE)
pT(x, n=1, log.p=FALSE, lower.tail=TRUE)
varT(p, n=1, log.p=FALSE, lower.tail=TRUE)
esT(p, n=1)
scaler or vector of values at which the pdf or cdf needs to be computed
scaler or vector of values at which the value at risk or expected shortfall needs to be computed
the value of the degree of freedom parameter, must be positive, the default is 1
if TRUE then log(pdf) are returned
if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
if FALSE then 1-cdf are returned and quantiles are computed for 1-p
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
S. Nadarajah, S. Chan and E. Afuecheta, An R Package for value at risk and expected shortfall, submitted
# NOT RUN {
x=runif(10,min=0,max=1)
dT(x)
pT(x)
varT(x)
esT(x)
# }
Run the code above in your browser using DataLab