Computes the pdf, cdf, value at risk and expected shortfall for the Tukey-Lambda distribution due to Tukey (1962) given by
$$\begin{array}{ll}
&\displaystyle
{\rm VaR}_p (X) = \frac {p^\lambda - (1 - p)^\lambda}{\lambda},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {p^{\lambda + 1} + (1 - p)^{\lambda + 1} - 1}{p \lambda (\lambda + 1)}
\end{array}$$
for \(0 < p < 1\), and \(\lambda > 0\), the shape parameter.