Learn R Programming

VaRES (version 1.0.1)

TL: Tukey-Lambda distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Tukey-Lambda distribution due to Tukey (1962) given by $$\begin{array}{ll} &\displaystyle {\rm VaR}_p (X) = \frac {p^\lambda - (1 - p)^\lambda}{\lambda}, \\ &\displaystyle {\rm ES}_p (X) = \frac {p^{\lambda + 1} + (1 - p)^{\lambda + 1} - 1}{p \lambda (\lambda + 1)} \end{array}$$ for \(0 < p < 1\), and \(\lambda > 0\), the shape parameter.

Usage

varTL(p, lambda=1, log.p=FALSE, lower.tail=TRUE)
esTL(p, lambda=1)

Arguments

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

lambda

the value of the shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

S. Nadarajah, S. Chan and E. Afuecheta, An R Package for value at risk and expected shortfall, submitted

Examples

Run this code
# NOT RUN {
x=runif(10,min=0,max=1)
varTL(x)
esTL(x)
# }

Run the code above in your browser using DataLab