Computes the pdf, cdf, value at risk and expected shortfall for the beta distribution given by
$$\begin{array}{ll}
&\displaystyle
f (x) = \frac {x^{a - 1} (1 - x)^{b - 1}}{B (a, b)},
\\
&\displaystyle
F (x) = I_x (a, b),
\\
&\displaystyle
{\rm VaR}_p (X) = I_p^{-1} (a, b),
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{p} \int_0^p I_v^{-1} (a, b) dv
\end{array}$$
for \(0 < x < 1\), \(0 < p < 1\), \(a > 0\), the first parameter, and \(b > 0\), the second shape parameter.