50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


VaRES (version 1.0.1)

betagompertz: Beta Gompertz distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gompertz distribution due to Cordeiro et al. (2012b) given by f(x)=bηexp(bx)B(c,d)exp(dη)exp[dηexp(bx)]{1exp[ηηexp(bx)]}c1,F(x)=I1exp[ηηexp(bx)](c,d),VaRp(X)=1blog{11ηlog[1Ip1(c,d)]},ESp(X)=1pb0plog{11ηlog[1Iv1(c,d)]}dv for x>0, 0<p<1, b>0, the first scale parameter, η>0, the second scale parameter, c>0, the first shape parameter, and d>0, the second shape parameter.

Usage

dbetagompertz(x, b=1, c=1, d=1, eta=1, log=FALSE)
pbetagompertz(x, b=1, c=1, d=1, eta=1, log.p=FALSE, lower.tail=TRUE)
varbetagompertz(p, b=1, c=1, d=1, eta=1, log.p=FALSE, lower.tail=TRUE)
esbetagompertz(p, b=1, c=1, d=1, eta=1)

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

b

the value of the first scale parameter, must be positive, the default is 1

eta

the value of the second scale parameter, must be positive, the default is 1

c

the value of the first shape parameter, must be positive, the default is 1

d

the value of the second shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

S. Nadarajah, S. Chan and E. Afuecheta, An R Package for value at risk and expected shortfall, submitted

Examples

Run this code
# NOT RUN {
x=runif(10,min=0,max=1)
dbetagompertz(x)
pbetagompertz(x)
varbetagompertz(x)
esbetagompertz(x)
# }

Run the code above in your browser using DataLab