50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

VaRES (version 1.0.1)

betagumbel2: Beta Gumbel 2 distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel II distribution given by f(x)=abxa1B(c,d)exp(bdxa)[1exp(bxa)]c1,F(x)=I1exp(bxa)(c,d),VaRp(X)=b1/a{log[1Ip1(c,d)]}1/a,ESp(X)=b1/ap0p{log[1Iv1(c,d)]}1/adv for x>0, 0<p<1, a>0, the first shape parameter, b>0, the scale parameter, c>0, the second shape parameter, and d>0, the third shape parameter.

Usage

dbetagumbel2(x, a=1, b=1, c=1, d=1, log=FALSE)
pbetagumbel2(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varbetagumbel2(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
esbetagumbel2(p, a=1, b=1, c=1, d=1)

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

b

the value of the scale parameter, must be positive, the default is 1

a

the value of the first shape parameter, must be positive, the default is 1

c

the value of the second shape parameter, must be positive, the default is 1

d

the value of the third shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

S. Nadarajah, S. Chan and E. Afuecheta, An R Package for value at risk and expected shortfall, submitted

Examples

Run this code
# NOT RUN {
x=runif(10,min=0,max=1)
dbetagumbel2(x)
pbetagumbel2(x)
varbetagumbel2(x)
#esbetagumbel2(x)
# }

Run the code above in your browser using DataLab