Learn R Programming

VaRES (version 1.0.1)

burr7: Burr XII distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Burr XII distribution due to Burr (1942) given by $$\begin{array}{ll} &\displaystyle f (x) = \frac {k c x^{c - 1}}{\left( 1 + x^c \right)^{k + 1}}, \\ &\displaystyle F (x) = 1 - \left( 1 + x^c \right)^{-k}, \\ &\displaystyle {\rm VaR}_p (X) = \left[ (1 - p)^{-1 / k} - 1 \right]^{1/c}, \\ &\displaystyle {\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ (1 - v)^{-1 / k} - 1 \right]^{1/c} dv \end{array}$$ for \(x > 0\), \(0 < p < 1\), \(c > 0\), the first shape parameter, and \(k > 0\), the second shape parameter.

Usage

dburr7(x, k=1, c=1, log=FALSE)
pburr7(x, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
varburr7(p, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
esburr7(p, k=1, c=1)

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

k

the value of the first shape parameter, must be positive, the default is 1

c

the value of the second shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

S. Nadarajah, S. Chan and E. Afuecheta, An R Package for value at risk and expected shortfall, submitted

Examples

Run this code
# NOT RUN {
x=runif(10,min=0,max=1)
dburr7(x)
pburr7(x)
varburr7(x)
esburr7(x)
# }

Run the code above in your browser using DataLab