Computes the pdf, cdf, value at risk and expected shortfall for the half Cauchy distribution given by
$$\begin{array}{ll}
&\displaystyle
f (x) = \frac {2}{\pi} \frac {\sigma}{x^2 + \sigma^2},
\\
&\displaystyle
F (x) = \frac {2}{\pi} \arctan \left( \frac {x}{\sigma} \right),
\\
&\displaystyle
{\rm VaR}_p (X) = \sigma \tan \left( \frac {\pi p}{2} \right),
\\
&\displaystyle
{\rm ES}_p (X) = \frac {\sigma}{p} \int_0^p \tan \left( \frac {\pi v}{2} \right) dv
\end{array}$$
for \(x > 0\), \(0 < p < 1\), and \(\sigma > 0\), the scale parameter.