Computes the pdf, cdf, value at risk and expected shortfall for the power function II distribution given by
$$\begin{array}{ll}
&\displaystyle
f (x) = b (1 - x)^{b - 1},
\\
&\displaystyle
F (x) = 1 - (1 - x)^b,
\\
&\displaystyle
{\rm VaR}_p (X) = 1 - (1 - p)^{1 / b},
\\
&\displaystyle
{\rm ES}_p (X) = 1 + \frac {b \left[ (1 - p)^{1 / b + 1} - 1 \right]}{p (b + 1)}
\end{array}$$
for \(0 < x < 1\), \(0 < p < 1\), and \(b > 0\), the shape parameter.