50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


VaRES (version 1.0.2)

betaburr: Beta Burr distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Burr distribution due to Parana\'iba et al. (2011) given by f(x)=babdB(c,d)xbd+1[1+(x/a)b]cd,F(x)=I11+(x/a)b(c,d),VaRp(X)=a[Ip1(c,d)]1/b[1Ip1(c,d)]1/b,ESp(X)=ap0p[Iv1(c,d)]1/b[1Iv1(c,d)]1/bdv for x>0, 0<p<1, a>0, the scale parameter, b>0, the first shape parameter, c>0, the second shape parameter, and d>0, the third shape parameter, where Ix(a,b)=0xta1(1t)b1dt/B(a,b) denotes the incomplete beta function ratio, B(a,b)=01ta1(1t)b1dt denotes the beta function, and Ix1(a,b) denotes the inverse function of Ix(a,b).

Usage

dbetaburr(x, a=1, b=1, c=1, d=1, log=FALSE)
pbetaburr(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varbetaburr(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
esbetaburr(p, a=1, b=1, c=1, d=1)

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

a

the value of the scale parameter, must be positive, the default is 1

b

the value of the first shape parameter, must be positive, the default is 1

c

the value of the second shape parameter, must be positive, the default is 1

d

the value of the third shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Author

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Examples

Run this code
x=runif(10,min=0,max=1)
dbetaburr(x)
pbetaburr(x)
varbetaburr(x)
esbetaburr(x)

Run the code above in your browser using DataLab