Computes the pdf, cdf, value at risk and expected shortfall for the hyperbolic secant distribution given by
$$\begin{array}{ll}
&\displaystyle
f (x) = \frac {1}{2} {\rm sech} \left( \frac {\pi x}{2} \right),
\\
&\displaystyle
F (x) = \frac {2}{\pi} \arctan \left[ \exp \left( \frac {\pi x}{2} \right) \right],
\\
&\displaystyle
{\rm VaR}_p (X) = \frac {2}{\pi} \log \left[ \tan \left( \frac {\pi p}{2} \right) \right],
\\
&\displaystyle
{\rm ES}_p (X) = \frac {2}{\pi p} \int_0^p \log \left[ \tan \left( \frac {\pi v}{2} \right) \right] dv
\end{array}$$
for \(-\infty < x < \infty\), and \(0 < p < 1\).