tp <- TransitionParam()
TransitionParam(taup=1e12)
data(snp_exp)
emission_param <- EmissionParam(temper=1/2)
fit <- hmm2(snp_exp, emission_param)
unlist(fit)
cnvSegs(fit)
## There is too little data to infer cnv reliably in this trivial example.
## To illustrate filtering options on the results, we select
## CNVs for which
## - the CNV call has a posterior probability of at least 0.5
## - the number of features is 2 or more
## - the HMM states are 1 (homozygous deletion) or 2 (hemizygous deletion)
fp <- FilterParam(probability=0.5, numberFeatures=2, state=c("1", "2"))
cnvSegs(fit, fp)
## for parallelization
## Not run:
# library(snow)
# library(doSNOW)
# cl <- makeCluster(2, type = "SOCK")
# registerDoSNOW(cl)
# fit <- hmm2(snp_exp, emission_param)
# ## End(Not run)
Run the code above in your browser using DataLab